
Runoff

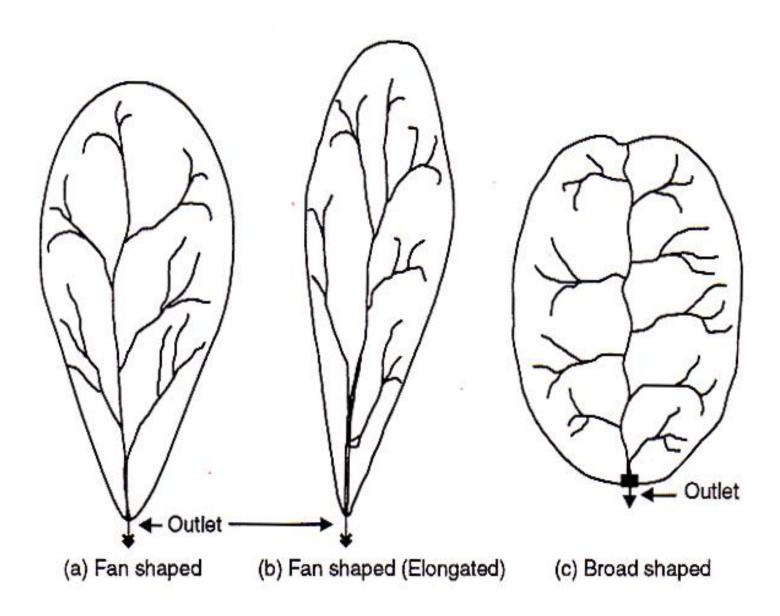
Prof. M.M.M. Najim

- At the end of this section, students will be able to
 - Explain different types of runoff
 - Explain the factors affecting runoff
 - Apply rational method to estimate peak rate of runoff
 - Estimate the runoff coefficient for a heterogeneous watershed
 - Estimate time of concentration for a watershed

• Runoff is the portion of rainfall which flows through the rivers, streams etc.

Types of Runoff

- Surface runoff
 - Portion of rainfall (after all losses such as interception, infiltration, depression storage etc. are met) that enters streams immediately after occurring rainfall
 - After laps of few time, overland flow joins streams
 - Sometime termed prompt runoff (as very quickly enters streams)
- Subsurface runoff
 - Amount of rainfall first enter into soil and then flows laterally towards stream without joining water table
 - Also take little time to reach stream


- Base flow
 - Delayed flow
 - Water that meets the groundwater table and join the stream or ocean
 - Very slow movement and take months or years to reach streams

Factors affecting runoff

- Climatic factors
 - Type of precipitation
 - Rain and snow fall
 - Rainfall intensity
 - High intensity rainfall causes more rainfall
 - Duration of rainfall
 - When duration increases, infiltration capacity decreases resulting more runoff
 - Rainfall distribution
 - Distribution of rainfall in a catchment may vary and runoff also vary
 - More rainfalls closer to the outlet, peak flow occurs quickly

- Direction of prevailing wind
 - If the wind direction is towards the flow direction, peak flow will occur quickly
- Other climatic factors
 - Temperature, wind velocity, relative humidity, annual rainfall etc. affect initial loss of precipitation and thereby affecting runoff

- Physiographic factors
 - Physiographic characteristics of watershed and channel both
 - Size of watershed
 - Larger the watershed, longer time needed to deliver runoff to the outlet
 - Small watersheds dominated by overland flow and larger watersheds by runoff
 - Shape of watershed
 - Fan shaped, fan shaped (elongated) and broad shaped

- Fan shaped runoff from the nearest tributaries drained out before the floods of farthest tributaries. Peak runoff is less
- Broad shaped all tributaries contribute runoff almost at the same time so that peak flow is more
- Orientation of watershed
 - Windward side of mountains get more rainfall than leeward side
- Landuse
 - Forest thick layer of organic matter and undercover huge amounts absorbed to soil – less runoff and high resistance to flow
 - barren lands high runoff

– Soil moisture

- Runoff generated depend on soil moisture more moisture means less infiltration and more runoff
- Dry soil more water absorbed to soil and less runoff
- Soil type
 - Light soil (sandy) large pores and more infiltration
 - Heavy textured soils less infiltration and more runoff
- Topographic characteristics
 - Higher the slope, faster the runoff
 - Channel characters such as length, shape, slope, roughness, storage, density of channel influence runoff

- Drainage density $Drainage \ density = \frac{Total \ channel \ length}{Total \ area \ of \ watershed}$

• More the drainage density, runoff yield is more

Runoff Computation

- Computation of runoff depend on several factors
- Several methods available
 - Rational method
 - Cook's method
 - Curve number method
 - Hydrograph method
 - Many more

Rational Method

- Computes peak rate of runoff
- Peak runoff should be known to design hydraulic structures that must carry it.

$$Q_{Peak} = \frac{CIA}{360}$$

- Q_{Peak} = Peak runoff rate (m³/s)
- C = runoff coefficient
- I = rainfall intensity (mm/h) for the duration equal to the time of concentration
- A = Area of watershed (ha)

- Runoff coefficient
 - Ratio of peak runoff rate to the rainfall intensity
 - No units, 0 to 1
 - Depend on landuse and soil type
 - When watershed has many land uses and soil types, weighted average runoff coefficient is calculated $C_{a} + C_{b}a_{b} + C_{b}a_{b}$

$$C_{w} = \frac{C_{1}a_{1} + C_{2}a_{2} + C_{3}a_{3}}{a_{1} + a_{2} + a_{3}}$$
$$\frac{\sum_{i=1}^{n} C_{i}a_{i}}{A}$$

Runoff coefficient for Rational Method

	Land use and topography	Soil type			
S.No.		Sandy loam	Clay and silt loam	Tight clay	
1.	Cultivated land				
	(i) Flat	0.30	0.50	0.60	
	(ii) Rolling	0.40	0.60	0.70	
	(iii) Hilling	0.52	0.70	0.82	
2.	Pasture land		Call the Schwarz of the		
	(i) Flat	0.10	0.30	0.40	
	(ii) Rolling	0.16	0.36	0.55	
	(iii) Hilling	0.22	0.42	0.60	
3.	Forest land		1. ° 2		
	(i) Flat	0.10	0.30	0.40	
	(ii) Hilling	0.30	0.50	0.60	
4.	Populated land				
	(i) Flat	0.40	0.55	0.65	
	(ii) Rolling	0.50	0.65	0.80	

12

- Time of concentration (T_c)
 - Time required to reach the surface runoff from remotest point of watershed to its outlet
 - At T_c all the parts of watershed contribute to the runoff at outlet
 - Have to compute the rainfall intensity for the duration equal to time of concentration
 - Several methods to calculate $\rm T_{\rm c}$
 - Kirpich equation

$$T_c = 0.02 L^{0.77} S^{-0.385}$$

- T_c = time of concentration (min)
 L = Length of channel reach (m)
 S = Average channel slope (m/m)
- Computation of rainfall intensity for the duration of $\rm T_{\rm c}$

$$I = \frac{\text{Rainfall Depth}}{T_c} = \frac{cm \ or \ mm}{h}$$

- Assumptions of Rational Method
 - Rainfall occur with uniform intensity at least to the $T_{\rm c}$
 - Rainfall intensity is uniform throughout catchment
- Limitations of Rational Method
 - Uniform rainfall throughout the watershed never satisfied
 - Initial losses (interception, depression storage, etc). are not considered

Cook's Method

- Computes runoff based on 4 characteristics (relief, infiltration rate, vegetal cover and surface depression)
- Numerical values are assigned to each

Steps in calculation

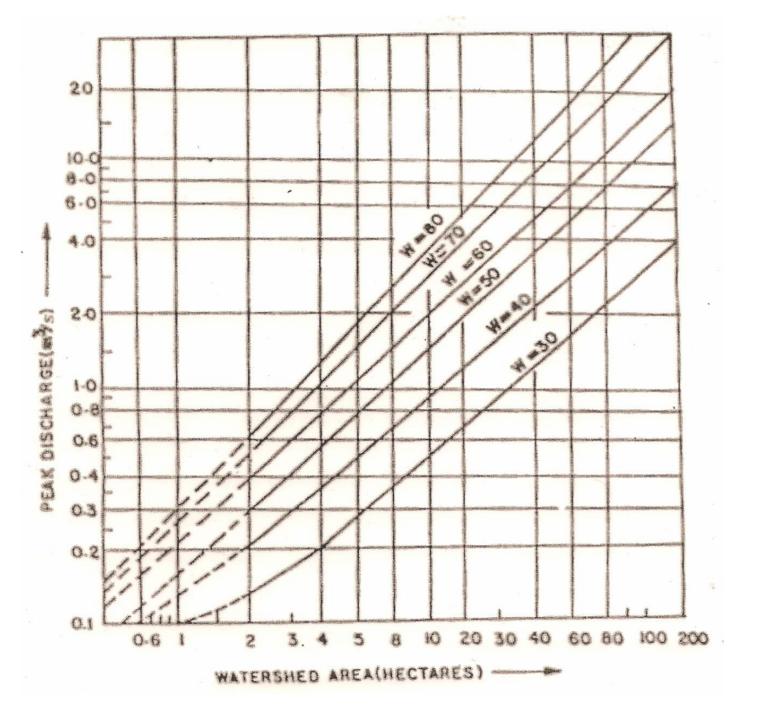
- Step 1
 - Evaluate degree of watershed characteristics by comparing with similar conditions

S. No.	Range	Numerical values assigned for runoff producing wateshed's characteristics				
140.		Relief	Soil infiltration	Vegetal cover	Surface storage	
1.	Low	(10 to 0) Land is relatively flat, average slope ranges from 0 to 5%.	cm/hour, soil	(5) About 9% of total area is covered under good vegetation either by forest or equivalent.	high surface depression, drainage system	
2.	Normal	(20 to 10) The land is rolling in shape and slope ranges from 5% to 10%.	to 2 cm/ hour,	(10) About 50% of total area is under good grass land or any other equivalent cover.	depression storage, lakes,	
3.	High	(30 to 20) Lands are hilly in nature, ave- rage slope ran- ges from 10% to 30%.	(15) Infiltration rate ranges from 0.25 to 0.75 cm/ hour, the soil is relatively hard such as clay soil.	(15) Vegetal cover varies from poor to fair, less than 10% of total area is under grass cover.	low and area is well drained.	
4.	Extreme	(40 to 30) Lands are steep and rugged terrain, slope ranges upto 30%.	(20) Infiltration rate is less.	(20) Land is bare, no effective grass cover.		

Numerical values for Cook's Method • Step 2

Assign numerical value (W) to each of the characteristics

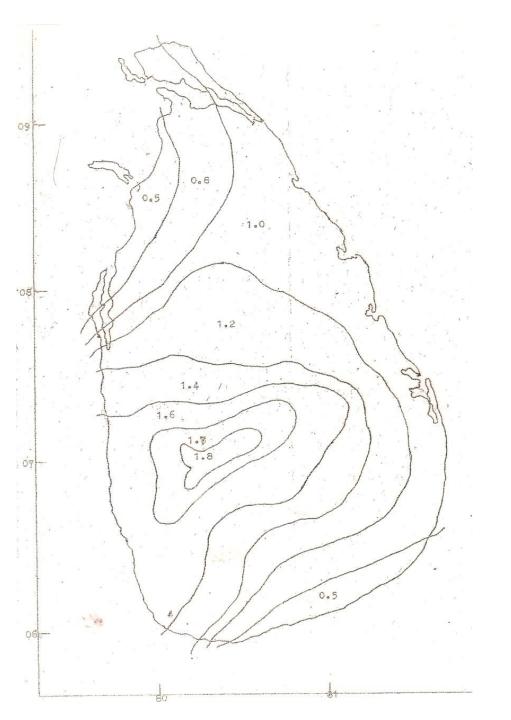
- Step 3
 - Find sum of numerical values assigned

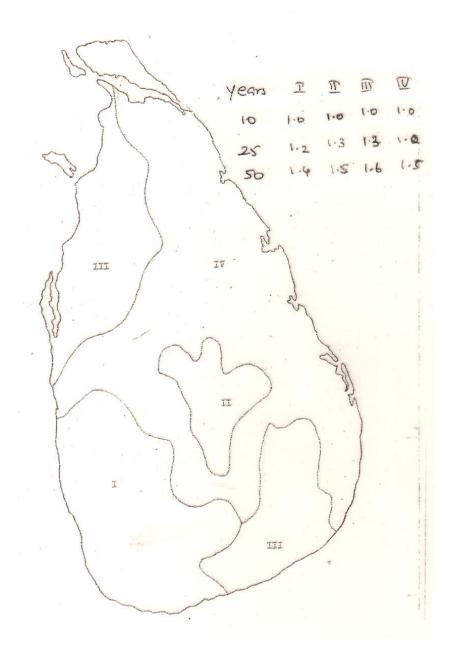

$$\sum W = R + I + V + D$$

ΣW = total numerical value

R, I, V, and D are marks given to relief character, initial infiltration, vegetal cover and surface depression respectively

- Step 4
 - Determine runoff rate against ΣW using runoff curve (valid for specified geographical region and 10 year recurrence interval)
- Step 5
 - Compute adjusted runoff rate for desired recurrence interval and watershed location


$$Q_{Peak} = P.R.F.S$$


- Q_{Peak} = Peak runoff for specified geographical location and recurrence interval (m³/s)
- P = Uncorrected runoff obtained from step 4
- R = Geographic rainfall factor (Figures for Sri Lanka)
- F = Recurrence interval factor (Figures for Sri Lanka)
- S = Shape factor

Shape factor for Cook's method

Ratio of length to	Watershed area in hectares					
breadth	20	40	80	200	240	
1	1.00	1.00	1.00	1.00	1.00	
1-1 1/2	0.92	0.92	0.91	0.90	0.90	
2	0.88	0.87	0.86	0.84	0.83	
2-2 1/2	0.85	0.84	0.82	0.80	0.78	
3	0.81	0.80	0.78	0.76	0.74	
4	0.76	0.75	0.73	0.71	0.69	
5	0.74	0.72	0.70	0.68	0.66	
6	0.72	0.70	0.68	0.66	0.64	
7	0.70	0.68	0.66	0.64	0.62	

Rainfall Factor

Frequency Factor

Curve Number Method

- Calculates runoff on the retention capacity of soil, which is predicted by wetness status (Antecedent Moisture Conditions [AMC]) and physical features of watershed
- AMC relative wetness or dryness of a watershed, preceding wetness conditions
- This method assumes that initial losses are satisfied before runoff is generated

$$Q = \frac{(P - 0.2S)^2}{(P + 0.8S)} \qquad CN = \frac{2540}{(25.4 + S)}$$

- Q = Direct runoff
- P = Rainfall depth
- S = Retention capacity of soil
- CN = Curve Number

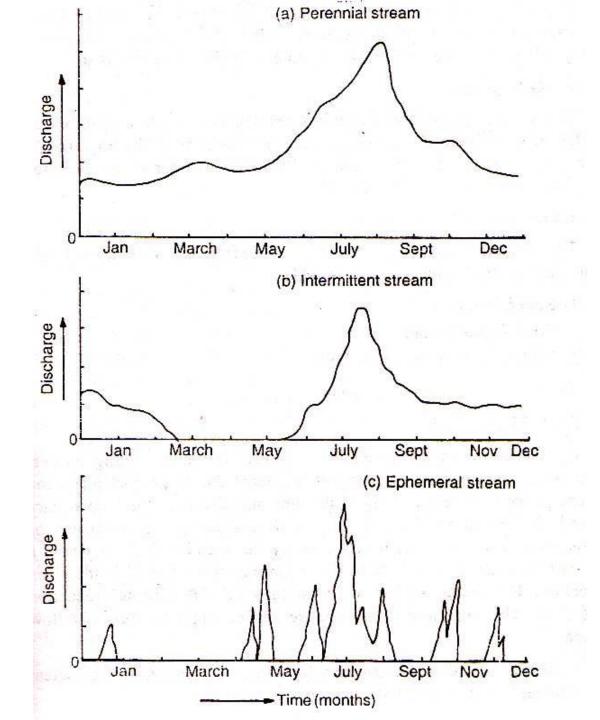
 CN depends on landuse pattern, soil conservation type, hydrologic condition, hydrologic soil group

Land use	Treatment/practice adopted	Hydrologic condition	Hydrologic soil group			
pattern			Α	В	С	D
Fallow-row crops	Straight row	i£i £i <u>_</u> € 10-3 !0]4	77	86	91	94
		Poor	72	81	88	91
		Good	67	78	85	89
	Contoured + terraced condition	Poor 2	0 70 0	79	84	88
Small grain	Straight row	Poor	65	76	84	88
	0.25)	Good	63	75	83	87
	Contoured condition	Poor (63	74	82	85
	- 0.25)	Good	63	75	83	87
	Contoured + terraced condition	Poor	. ⊲61	72	79	82
	0.25)*	Good	59	70	78	81
Seeded	Straight row	Poor	66	77	85	89
Legumed	0.23) *******	Good	55	69	78	83
Pasture land	Contoured condition	Poor	47	67	81	88
wondnu ze l	to arrience doubly .)	Fair Fair	25	59	75	83
sing the curv	Sis determined by it	Good	6	35	70	79
Farm	ion Survice (1972),	Poor	45	66	77	83
Woodland	the set groupedure	Fair	36	60	73.	79
	and the states are	Good	25	55	70	77
Hard surface	oshoug an spunde	inder which	74	84	90	92
Farm steads	A 10 DUNIS 102 30	alcabid bis and use cone	59	74	82	86
Meadow	The and me well some	anto milian	330	58	71	78

• Curve Numbers

Procedure

- Step 1
 - Find value of CN using table
 - Calculate S using equation
 - Use equation and calculate Q (AMC II)
 - Use correction factor if necessary to convert to other AMCs)
- Three AMC conditions

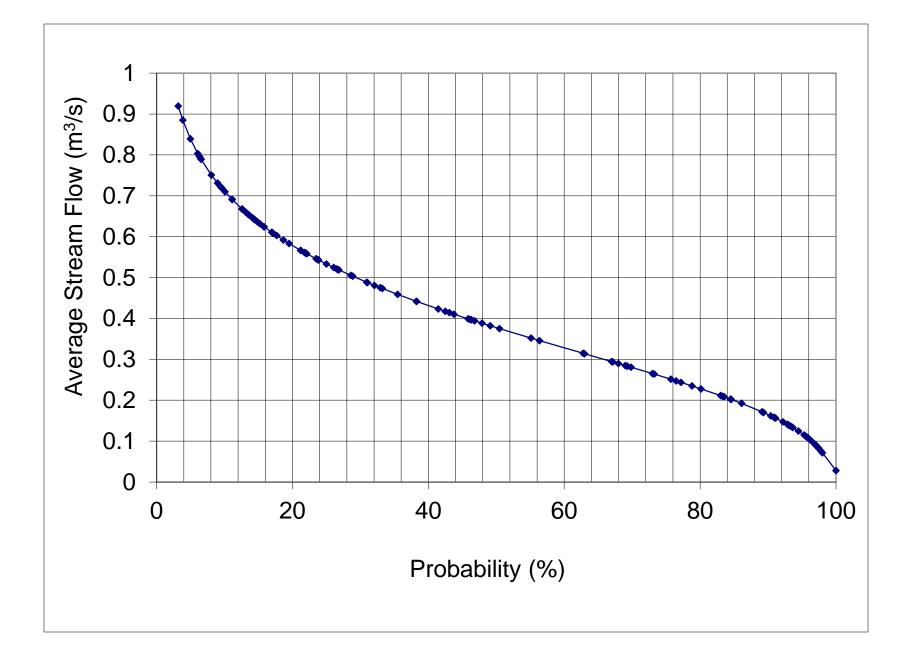

Factors for converting AMC II to AMC I or AMR III

CN – AMC II	Conversion Factor		
	AMCI	AMC III	
10	0.40	2.22	
20	0.45	1.85	
30	0.50	1.67	
40	0.55	1.50	
50	0.62	1.40	
60	0.67	1.30	
70	0.73	1.21	
80	0.79	1.14	
90	0.87	1.07	
100	1.00	1.00	

- AMC I Lowest runoff generating potential dry soil
- AMC II Average moisture status
- AMC III Highest runoff generating potential saturated soil
- Soil A low runoff generating potential, sand or gravel soils with high infiltration rates
- Soil B Moderate infiltration rate, moderately fine to moderately coarse particles
- Soil C Low infiltration rate, thin hard layer prevents downward water movement, moderately fine to fine particles
- Soil D High runoff potential due to very low infiltration rate, clay soils

Classification of Streams

- Based on flow duration, streams are classified into
 - Perennial
 - Streams carry flow throughout the year
 - Appreciable groundwater contribution throughout the year
 - Intermittent
 - Limited groundwater contribution
 - In rainy season, groundwater table rises above stream bed
 - Dry season stream get dried
 - Ephemeral
 - In arid areas
 - Flow due to rainwater only
 - No base flow contribution



Flow Duration Curve

- Gives the variability of stream flow in a year
 - Arrange stream flow data in descending order
 - Assign rank number
 - Calculate plotting position (Probability)

$$P = \left(\frac{m}{n+1}\right) 100$$

Plot plotting position and discharge

- Characteristics of flow duration curve
 - Steep slope highly variable flow
 - Flat slope little variation in the flow
 - Flat portion at top of curve stream has large flood plain
 - Flat portion at lower end considerable baseflow

- Uses of flow duration curve
 - Discharge for any probability can be known
 - Variation of flow within a year can be known
 - Plan water resources projects
 - Design of drainage structures
 - Decide on flood control structures to be used
 - Evaluate hydropower potential
 - Determine sediment load carried by stream